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Abstract When dealing with convex functions defined on a normed vector space X the
biconjugate is usually considered with respect to the dual system (X, X∗), that is, as a func-
tion defined on the initial space X . However, it is of interest to consider also the biconjugate
as a function defined on the bidual X∗∗. It is the aim of this note to calculate the biconju-
gate of the functions obtained by several operations which preserve convexity. In particular
we recover the result of Fitzpatrick and Simons on the biconjugate of the maximum of two
convex functions with a much simpler proof.
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1 Introduction

When treating convex analysis in locally convex spaces it is natural to consider the dual
system (X, X∗, 〈·, ·〉), where 〈x, x∗〉 := x∗(x) for x ∈ X and x∗ ∈ X∗. In the case when
X is a normed vector space besides this dual system we can also consider the dual system
(X∗, X∗∗, 〈·, ·〉), where 〈x∗, x∗∗〉 := x∗∗(x∗) for x∗ ∈ X∗ and x∗∗ ∈ X∗∗. Of course, in such
a situation we identify X with J (X), where J : X → X∗∗, 〈x∗, J x〉 := 〈x, x∗〉 ; generally
J x is denoted by x̂ or simply x . In this way, having a function g : X∗ → R, for its conjugate
one can consider both the dual system (X, X∗, 〈·, ·〉) as well as (X∗, X∗∗, 〈·, ·〉). In our book
[9] we considered only the first situation. However it is interesting to consider also the second
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situation. This was already done for example in [3,7,8]. More recently some problems in this
context were studied in [2].

Our aim in this note is to give formulas for the second conjugate as a function defined
on the bidual for several classes of convex functions like sums, compositions with linear
operators, maximum, convolution, max-convolution and the new function introduced in [6].
In fact we shall see that these formulas can be easily deduced from the formulas for their
conjugates already known.

2 Notation and preliminary results

Consider first a separated dual system (X, Y, 〈·, ·〉). This means that X, Y are real linear
spaces and 〈·, ·〉 : X × Y → R is bilinear with the properties: 〈x, y〉 = 0 for every y ∈ Y
implies x = 0 and 〈x, y〉 = 0 for every x ∈ X implies y = 0. Note that X and Y have sym-
metric roles. Having such a dual system on X we consider the weakest topology σ(X, Y )

which makes continuous all the functions 〈·, y〉 with y ∈ Y , and similarly the topology
σ(Y, X) on Y . Also note that (X, σ (X, Y )) becomes a locally convex space whose topologi-
cal dual can be, and is, identified with Y in the sense that for every continuous linear function
ϕ : (X, σ (X, Y )) → R there exists a unique y ∈ Y such that ϕ(x) = 〈x, y〉 for every
x ∈ X . A similar statement holds for (Y, σ (Y, X)). Starting with a separated locally convex
space (X, τ ) and taking X∗ its topological dual, the natural dual system is (X, X∗, 〈·, ·〉)
with 〈x, x∗〉 := x∗(x) for x ∈ X and x∗ ∈ X∗; we shall denote this dual system simply
(X, X∗). In such a situation the topology σ(X, X∗) is denoted by w and is called the weak
topology on X , while σ(X∗, X) is denoted by w∗ and is called the weak star topology on
X∗. Of course, (X, w)∗ = X∗ and (X∗, w∗)∗ = X (by the above identifications). Remark
that a general dual system (X, Y, 〈·, ·〉) is of the type (X, X∗, 〈·, ·〉) when we consider on
X the topology τ = σ(X, Y ) because in this case X∗ = Y , as seen above. So, considering
the framework of a separated locally convex space (X, τ ) is sufficiently versatile. Even the
algebraic case can be considered in this framework. For this consider a linear space E , its
algebraic dual E ′ and 〈x, ϕ〉 := ϕ(x) for x ∈ E , ϕ ∈ E ′. Then it is convenient to take on E
also the core-topology τc, that is the locally convex topology generated by the family P of
all the semi-norms defined on E . Any semi-norm p ∈ P is continuous with respect to (w.r.t.
for short) τc and the interior w.r.t. τc of a convex set A ⊂ E is nothing else than the algebraic
interior (or core) of A; moreover, any convex function f : E → R is continuous on the core
of its domain and f is subdifferentiable on the intrinsic core of its domain when proper. In
this way all the results on convex functions stated in general locally convex spaces can be
applied for convex functions defined on linear spaces without topology.

Let us recall some notions and notation for convex sets and functions defined on locally
convex spaces (lcs for short). So let (X, τ ) be a lcs and A ⊂ X . By conv A, aff A, Ai , i A,
cl A (or clτ A or A or A

τ
) we denote the convex hull, affine hull, algebraic interior (or core),

relative algebraic interior (or intrinsic core), closure (with respect to τ when we want to
emphasize the topology) of A; of course, convA = cl(conv A). Having A ⊂ X the set ic A is
i A when aff A is closed and ic A is the empty set in the contrary case. As usual, for A, B ⊂ X ,
a ∈ X , � ⊂ R and α ∈ R we set

A + B := {a + b | a ∈ A, b ∈ B}, a + B := {a} + B,

�A := {γ a | γ ∈ �, a ∈ A}, αA := {α}A, −A := (−1)A.
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When A ⊂ X is a nonempty closed convex set, A∞ is the asymptotic (or recession) cone of
A, that is, the set ∩t>0t (A−a), where a ∈ A (A∞ does not depend on a ∈ A). Moreover, the
indicator function associated to the set A ⊂ X is the function ιA : X → R := R∪{−∞,∞}
defined by ιA(x) := 0 for x ∈ A and ιA(x) := ∞ for x ∈ X \ A, where ∞ := +∞.

Let f : X → R; the domain and the epigraph of f are defined by

dom f := {x ∈ X | f (x) < ∞}, epi f := {(x, t) ∈ X × R | f (x) ≤ t}.
The function f is proper if dom f �= ∅ and f (x) > −∞ for every x ∈ X . The class of
proper convex functions on X will be denoted by �(X). To the function f we associate
the greatest lower semicontinuous (lsc for short) function f or f

τ
majorized by f ; hence

epi f = cl(epi f ). When f is convex (which means that epi f is convex) then f is also
convex. For an arbitrary function f : X → R, conv f is the function whose epigraph is
conv(epi f ) and is the greatest lsc convex function majorized by f . The class of proper lsc
convex functions on X will be denoted by �(X) or �τ (X). The conjugate of f : X → R is
the function

f ∗ : X∗ →R, f ∗(x∗) := sup{〈x, x∗〉 − f (x) | x ∈ X}=sup{〈x, x∗〉 − f (x) | x ∈dom f };
it is clear that f ∗ = ( f )∗ = (conv f )∗. Moreover, f ∗ is a w∗–lsc convex function; f ∗ is
proper if and only if f is proper and minorized by a continuous affine function. It is clear
that the supremum supi∈I fi of a nonempty family of convex functions is convex, but its
conjugate is not easy to compute. On the other hand the infimum inf i∈I fi of a family of
convex functions is not convex, generally; however, inf i∈I fi is convex if fi ≤ f j or f j ≤ fi

whenever i, j ∈ I . Using the definition of the conjugate one obtains easily the next formula
for any functions fi : X → R with i ∈ I �= ∅:

(inf i∈I fi )
∗ = supi∈I f ∗

i . (1)

The ε-subdifferential of the proper function f : X → R at x ∈ dom f is defined by

∂ε f (x) := {x∗ ∈ X∗ | 〈

x ′ − x, x∗〉 ≤ f (x ′) − f (x) + ε ∀x ′ ∈ X},
where ε ∈ R+ := [0,∞); moreover, ∂ε f (x) := ∅ for x ∈ X \ dom f and ∂ f (x) := ∂0 f (x)

for x ∈ X .
Let f : X → R and A ∈ L(X, Y ), that is, Y is another lcs and A : X → Y is a continuous

linear operator. Define

A f : Y → R, (A f )(y) := inf{ f (x) | Ax = y}
with the usual convention inf ∅ := ∞. Then (A f )∗ = f ∗ ◦ A∗, where A∗ : Y ∗ → X∗ is the
adjoint of A (hence 〈Ax, y∗〉 = 〈x, A∗y∗〉 for all x ∈ X and y∗ ∈ Y ∗). Moreover, if f is
convex then A f is convex, too. However, A f might be non lower semicontinuous even if f
is lsc. Having the functions f1, . . . , fn : X → R, and using the conventions

0 · ∞ := ∞, 0 · (−∞) := 0, (−∞) + (+∞) := (+∞) + (−∞) := ∞,

the convolution and the max-convolution of f1, . . . , fn are the functions f1� . . . � fn,

f1♦ · · · ♦ fn : X → R defined by

( f1� · · · � fn)(x) := inf{ f1(x1) + . . . + fn(xn) | xi ∈ X, x1 + . . . + xn = x},
( f1♦ · · · ♦ fn)(x) := inf{ f1(x1) ∨ · · · ∨ fn(xn) | xi ∈ X, x1 + . . . + xn = x},
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where a ∨ b := max{a, b} for a, b ∈ R; we say that the (max-) convolution is exact if the
infimum in its definition is attained when finite. Observe that

a ∨ b = sup{λa + (1 − λ)b | λ ∈ (0, 1)} ∀a, b ∈ (−∞,∞]. (2)

We have that f1� · · · � fn = Ah and f1♦ · · · ♦ fn = Ak, where h, k : Xn → R are defined
by

h(x1, . . . , xn) := f1(x1) + . . . + fn(xn), k(x1, . . . , xn) := f1(x1) ∨ · · · ∨ fn(xn), (3)

and
A : Xn → X, A(x1, . . . , xn) := x1 + . . . + xn . (4)

Hence f1� · · · � fn and f1♦ · · · ♦ fn are convex when f1, . . . , fn are convex, but they are not
necessarily lsc when f1, . . . , fn are lsc. Since A∗x∗ = (x∗, . . . , x∗) one obtains ( f1� · · ·
� fn)∗ = f ∗

1 + . . . + f ∗
n .

We denote by g� the conjugate of g : X∗ → R w.r.t. the dual system (X, X∗), that is,

g� : X → R, g�(x) := sup{〈x, x∗〉 − g(x∗) | x∗ ∈ X∗}.
An important result in convex analysis, the biconjugate theorem, asserts that for the proper

function f : X → R, f = f ∗� if and only if f ∈ �(X). It follows that for a function
f : X → R with nonempty domain we have f ∗� = conv f if conv f is proper and f ∗� = −∞
(that is the constant function −∞) if conv f is not proper; in particular, if f is convex, then
f ∗� = f if f is proper and f ∗� = −∞ otherwise. Applying the previous discussion for
the dual system (X∗, X, 〈·, ·〉) if g : X∗ → R is a proper convex function we have that
g�∗ = gw∗

if gw∗
is proper and g�∗ = −∞ otherwise.

These simple observations yield the following result.

Proposition 1 Let X, Y be separated locally convex spaces and A ∈ L(X, Y ).

(i) If h ∈ �(Y ) is such that dom h ∩ Im A �= ∅ then (h ◦ A)∗ = A∗h∗w∗
.

(ii) If f1, . . . , fn ∈ �(X) are such that ∩i∈1,n dom fi �= ∅ then ( f1 + . . . + fn)∗ =
f ∗
1 � · · · � fn

w∗
.

Proof (i) Of course, h ◦ A ∈ �(X), and so (h ◦ A)∗� = h ◦ A. The function A∗h∗ is convex;
moreover, for the dual system (X∗, X, 〈·, ·〉) we have that (A∗h∗)� = h∗� ◦ (A∗)∗ = h ◦ A ∈
�(X), and so (h ◦ A)∗ = (A∗h∗)�∗ = A∗h∗w∗

.
(ii) Taking h and A as in (3) and (4), respectively, we have that h ∈ �(Xn) and dom h ∩

Im A �= ∅. The conclusion follows from (i). ��
Note that assertion (i) of the preceding proposition is equivalent to [4, Th. 2.7] while

assertion (ii) is equivalent to that in [4, Rem. 2.8]. Of course, instead of the topology w∗
on X∗ one can take any compatible topology with the dual system (X∗, X, 〈·, ·〉), that is, a
locally convex topology σ on X∗ for which the topological dual of X∗ is X .

The lower semicontinuity of the functions in the preceding result is essential. Indeed, take
X = R, f1 := ι(−∞,0], f2(x) := 0 for x > 0, f2(0) := 1, f2(x) := ∞ for x < 0. Then
f1 + f2 = ι{0} + 1, ( f1 + f2)

∗ = −1, f ∗
1 = ι[0,∞) = f2, f ∗

2 = ι(−∞,0] = f1, f ∗
1 � f ∗

2 = 0.
Also the conditions dom h ∩ Im A �= ∅ in (i) and ∩i∈1,n dom fi �= ∅ in (ii) are essen-

tial. For this take X = R
2, f1(x, y) := x−1 for x > 0, f1(x, y) := +∞ for x ≤ 0

and f2 := ι(−∞,0]×R. It is clear that dom f1 ∩ dom f2 = ∅, f ∗
1 (x∗, y∗) = −2

√−x∗
for x∗ ≤ 0 and y∗ = 0, f ∗

1 (x∗, y∗) = ∞ otherwise and f ∗
2 = ι[0,∞)×{0}. Moreover,
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( f ∗
1 � f ∗

2 )(x∗, y∗) = −∞ for x∗ ∈ R and y∗ = 0, ( f ∗
1 � f ∗

2 )(x∗, y∗) = ∞ otherwise, and so

−∞ = ( f1 + f2)
∗ �= f ∗

1 � f ∗
2

w∗
= f ∗

1 � f ∗
2 = f ∗

1 � f ∗
2 .

As in [7], we consider the right multiplication of the function f : X → R with the scalar
λ ∈ P := (0,∞) as being the function f λ : X → R defined by ( f λ)(x) := λ f (λ−1x).
Also, as in [7], when f ∈ �(X), we set f 0 := f∞, where the recession function f∞ has as
epigraph the recession cone of epi f ; alternatively,

f∞(x) = lim
t→∞ t−1 f (x0 + t x) = sup

{

t−1[ f (x0 + t x) − f (x0)] | t ∈ P
}

,

where x0 ∈ dom f . An easy calculation shows that

(α f )∗ = f ∗α, ( f α)∗ = α f ∗ ∀α ∈ P. (5)

Moreover (see f.i. [9, Exer. 2.23]),

ι∗dom f = (0 f )∗ = f ∗0, ( f 0)∗ = 0 f ∗w∗ = ι
dom f ∗w∗ ∀ f ∈ �(X). (6)

In the next sections we consider X to be a normed vector space. Of course, X∗ is also a
normed vector space (even a Banach space) endowed with the dual norm. So, for a function
g : X∗ → R we can consider the conjugate g� : X → R corresponding to the dual system
(X, X∗) or the conjugate g∗ : X∗∗ → R corresponding to the dual system (X∗, X∗∗). Taking
into account the biconjugate theorem we have that f ∗∗|X = f for every f ∈ �(X). Our
interest is to calculate the biconjugate h∗∗ for several classes of convex functions h : X → R

defined on a normed vector space X .

3 The biconjugates of convolutions

In the sequel X, Y are normed vector spaces if not mentioned otherwise; as usual X∗, Y ∗
are their topological duals and X∗∗, Y ∗∗ their topological biduals. The topologies σ(X∗, X)

and σ(X∗∗, X∗) will be denoted by w∗. First of all, applying [9, Th. 2.4.14] to the function
sA := ι∗A, where A ⊂ X is a nonempty convex set, for the dual system (X∗, X∗∗) we obtain
(see [2, Sect. 4]) that

(ιA)∗∗ = ι
J (A)

w∗ . (7)

A useful property of the biconjugate is obtained using the following result stated in [2,
Lem. 4.5].

Proposition 2 Let y ∈ X, f ∈ �(X), x∗ ∈ dom f ∗, γ ≥ 0 and x∗∗ ∈ ∂γ f ∗(x∗) be such
that ‖ŷ − x∗∗‖ < α. Then for every δ > 0 and every w∗-neighborhood V of x∗∗ in X∗∗,
there exists xδ,V ∈ X such that

∥

∥y − xδ,V
∥

∥ < α and x̂δ,V ∈ V ∩ ∂γ+δ f ∗(x∗).

Using this result we got in [2, Cor. 4.7] the following extension of [5, Lem. 3.1]. Note that
[5, Lem. 3.1] is proved for X a Banach space and using the formula ( f ∨ g)∗∗ = f ∗∗ ∨ g∗∗
obtained in [7] when f is continuous at some point of dom f ∩ dom g (see Proposition 6
below).

Proposition 3 Let f ∈ �(X) and x∗∗ ∈ X∗∗. Then there exists a net (xi )i∈I ⊂ X such that

x̂i →w∗
x∗∗, ‖xi‖ → ∥

∥x∗∗∥
∥ , f (xi ) → f ∗∗(x∗∗).
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An immediate consequence of this result is the relation

J (dom f ) ⊂ dom f ∗∗ ⊂ J (dom f )
w∗ ∀ f ∈ �(X).

Let us mention first which is the biconjugate of A f .

Proposition 4 (i) If f ∈ �(X) and A ∈ L(X, Y ) are such that dom f ∗ ∩ Im A∗ �= ∅ then

(A f )∗∗ = A∗∗ f ∗∗w∗
.

Moreover, if 0 ∈ ic(dom f ∗ − Im A∗) then (A f )∗∗ = A∗∗ f ∗∗ and the infimum in the defini-
tion of A∗∗ f ∗∗ is attained.

(ii) If f1, . . . , fn ∈ �(X) are such that ∩i∈1,n dom f ∗
i �= ∅ then

( f1� · · · � fn)∗∗ = f ∗∗
1 � · · · � f ∗∗

n
w∗

.

Moreover, if n = 2 and 0 ∈ ic(dom f ∗
1 − dom f ∗

2 ) then ( f1� f2)
∗∗ = f ∗∗

1 � f ∗∗
2 and the

second convolution is exact.
(iii) If f1, . . . , fn ∈ �(X) are such that f1♦ · · · ♦ fn is proper then

( f1♦ · · · ♦ fn)∗∗ = f ∗∗
1 ♦ · · · ♦ f ∗∗

n
w∗

.

(When writing f1♦ · · · ♦ fn we mean the closure is taken w.r.t. the norm topology.)

Proof (i) We have seen that (A f )∗ = f ∗ ◦ A∗ without any condition on f and A. Applying
now Proposition 1 (i) for f ∗ and A∗ for the dual system (X∗, X∗∗) we get the conclu-
sion. For the second part apply [9, Th. 2.8.3 (vii)] for the Banach space X∗ the operator
A∗ ∈ L(Y ∗, X∗), 0 and f ∗. The assertion (ii) is obtained similarly.

(iii) We have seen that f1♦ · · · ♦ fn = Ak, where k and A are defined in (3) and (4). By
[9, Cor. 2.8.12] we have that

k∗ (

x∗
1 , . . . , x∗

n

) = min

{

n
∑

i=1

(λi fi )
∗(x∗

i ) | (λ1, . . . , λn) ∈ �n

}

for every
(

x∗
1 , . . . , x∗

n

) ∈ (X∗)n , where

�n := {

(λ1, . . . , λn) ∈ (R+)n | λ1 + . . . + λn = 1
}

.

It follows that ( f1♦ · · · ♦ fn)∗ = k∗ ◦ A∗, and so

( f1♦ · · · ♦ fn)∗ = min

{

n
∑

i=1

(λi fi )
∗ | (λ1, . . . , λn) ∈ �n

}

. (8)

Applying this formula for f ∗∗
1 , . . . , f ∗∗

n and the dual system (X∗, X∗∗) we get

( f ∗∗
1 ♦ · · · ♦ f ∗∗

n )� = min

{

n
∑

i=1

(λi f ∗∗
i )� | (λ1, . . . , λn) ∈ �n

}

. (9)

Using (5) and (6) for the dual systems (X, X∗) and (X∗, X∗∗), for all λ ∈ R+ := [0,∞)

and f ∈ �(X) we have (λ f )∗ = f ∗λ = ( f ∗∗)�λ = (λ f ∗∗)�. From (8) and (9) we get
( f1♦ · · · ♦ fn)∗ = ( f ∗∗

1 ♦ · · · ♦ f ∗∗
n )�. Taking the conjugate we get

( f1♦ · · · ♦ fn)∗∗ = ( f ∗∗
1 ♦ · · · ♦ f ∗∗

n )�∗ = f ∗∗
1 ♦ · · · ♦ f ∗∗

n
w∗

because f1♦ · · · ♦ fn is proper. ��
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Note that condition dom f ∗ ∩ Im A∗ �= ∅ means that there exist y∗ ∈ Y ∗ and γ ∈ R

such that f (x) ≥ 〈Ax, y∗〉 + γ for every x ∈ X (see [9, Cor. 2.6.4] for such a condition),
while the condition ∩i∈1,n dom f ∗

i �= ∅ means that there exist x∗ ∈ X∗ and γ ∈ R such that

fi (x) ≥ 〈x, x∗〉 + γ for all i ∈ 1, n and x ∈ X (see [9, Cor. 2.6.5] for such a condition).
Moreover, in (i) and (ii) we can take arbitrary proper functions f, f1, . . . , fn satisfying these
conditions.

We do not know if the formula below for f1♦ · · · ♦ fn is known.

Proposition 5 Let f1, · · · , fn ∈ �(X). Then

f1♦ · · · ♦ fn = max
(λ1,...,λn)∈�n

[(λ1 f1)� . . . �(λn fn)] . (10)

Proof It is clear that dom f1♦ · · · ♦ fn = dom f1 + . . . + dom fn . Let x ∈ dom f1 + . . . +
dom fn be fixed. Then ( f1♦ · · · ♦ fn)(x) = v(P), the value of the problem (P), where (P) is
the problem of minimizing t s.t. fi (ui )−t ≤ 0 for 1 ≤ i ≤ n−1, fn(x−u1−. . .−un)−t ≤ 0.
This is a convex problem verifying the Slater condition (just take t > f1(u1)∨ · · · ∨ fn(un),
where ui ∈ dom fi , for 1 ≤ i ≤ n with u1 + . . . + un = x). Applying [9, Th. 2.9.3] we
obtain that v(P) = v(D) and (D) has optimal solutions, where (D) is the dual problem of
(P), that is, (D) is the problem of maximizing

inf
(u,t)∈Xn−1×R

[

t +
n−1
∑

i=1

λi ( fi (ui ) − t) + λn( fn(x − u1 − · · · − un−1) − t)

]

s.t. λi , . . . , λn ∈ R+. Of course, here as everywhere throughout the paper, 0 · ∞ = ∞. But

inf
(u,t)∈Xn−1×R

[

t +
n−1
∑

i=1

λi ( fi (ui ) − t) + λn( fn(x − u1 − . . . − un−1) − t)

]

= −∞

for λi + . . . + λn �= 1. Hence

( f1♦ · · · ♦ fn)(x) = max
(λ1,...,λn)∈�n

inf
u∈Xn−1

[

n−1
∑

i=1

λi fi (ui ) + λn fn(x − u1 − . . . − un−1)

]

,

that is, (10) holds for x ∈ dom f1♦ · · · ♦ fn . Since (10) holds trivially for x �∈ dom f1♦ · · ·
♦ fn , the conclusion follows. ��

4 The biconjugates of h ◦ A and f + g

Concerning the biconjugate of h ◦ A and f + g we have the following result.

Proposition 6 (i) Assume that h ∈ �(Y ) and A ∈ L(X, Y ) are such that dom h ∩ Im A �= ∅.
Then

(h ◦ A)∗∗ ≥ h∗∗ ◦ A∗∗.

Moreover, if h ∈ �(Y ) then

(h ◦ A)∗∗ = h∗∗ ◦ A∗∗ ⇐⇒ A∗h∗w∗ = A∗h∗ ⇐⇒ (h ◦ A)∗ = A∗h∗.

If either (a) h is continuous at Ax for some x ∈ A−1(dom h), or (b) X and Y are complete,
h ∈ �(Y ) and 0 ∈ ic(dom h − Im A), then

(h ◦ A)∗∗ = h∗∗ ◦ A∗∗. (11)

123



482 J Glob Optim (2008) 40:475–487

(ii) Assume that f1, . . . , fn ∈ �(X) are such that ∩i∈1,n dom fi �= ∅. Then

( f1 + · · · + fn)∗∗ ≥ f ∗∗
1 + · · · + f ∗∗

n ,

with equality if and only if f ∗
1 � · · · � f ∗

n
w∗

= f ∗
1 � · · · � f ∗

n . Moreover, if n = 2 and either f1

is continuous at some element in dom f1 ∩ dom f2, or X is complete and 0 ∈ ic(dom f1 −
dom f2) then

( f1 + f2)
∗∗ = f ∗∗

1 + f ∗∗
2 .

Proof (i) As seen in Proposition 1 (i) we have that

(h ◦ A)∗ = A∗h∗w∗ ≤ A∗h∗ ≤ A∗h∗.

Hence

(h ◦ A)∗∗ = (

A∗h∗w∗)∗ ≥ (

A∗h∗)∗ = (

A∗h∗)∗ = h∗∗ ◦ A∗∗.

This relation also shows that (11) holds when A∗h∗w∗ = A∗h∗. Assume now that (11)

holds, and so
(

A∗h∗w∗)∗ = (

A∗h∗)∗
. It follows that

(

A∗h∗w∗)∗� = (

A∗h∗)∗�
. Because

A∗h∗w∗
, A∗h∗ ∈ �s(X∗), where s is the norm topology on X∗, using the biconjugate theo-

rem we obtain that A∗h∗w∗ = A∗h∗. If h is continuous at Ax for some x ∈ A−1(dom h), by
a well-known result (see f.i. [9, Th. 2.8.3 (iii)]) we have that (h ◦ A)∗ = A∗h∗ (even with the
infimum attained in the definition of A∗h∗). The same relation is true if X is complete and
0 ∈ ic(dom h − Im A) (see [9, Th. 2.8.3 (vii)]). Hence (h ◦ A)∗∗ = (A∗h∗)∗ = h∗∗ ◦ A∗∗.

(ii) The first part follows from (i) taking h and A as in (3) and (4), respectively. For the
second part use, f.i., [9, Th. 2.8.7 (iii)] and [9, Th. 2.8.7 (vii)], respectively. ��

Note that when h ∈ �(Y ) is continuous at some Ax ∈ dom h we have that (h ◦ A)∗ =
A∗h∗, and so (11) holds without the semicontinuity of h. Similarly, no need of the semicon-
tinuity of f1 and f2 when f1 is continuous at some x ∈ dom f1 ∩ dom f2.

In [10, p. 212] it is given an example of functions f1, f2 ∈ �(X) with dom f1∩dom f2 �= ∅
for X an arbitrary nonreflexive normed vector space with the property f ∗

1 � f ∗
2

w∗
�= f ∗

1 � f ∗
2 ;

in fact f1 and f2 are indicator functions. Hence for these functions one has ( f1 + f2)
∗∗ �=

f ∗∗
1 + f ∗∗

2 .

5 The biconjugate of f ∨ g

Note first that from (5) one gets immediately

(α f )∗∗ = α f ∗∗ ∀ f ∈ �(X), ∀α ∈ P, (12)

but the relation is not true for α = 0 even for dim X = 1. Indeed, take f (x) := (1 − x2)−1

for x ∈ (−1, 1), f (x) := ∞ otherwise. In fact, for α = 0 we have

(0 f )∗∗ = (ιdom f )
∗∗ = ι

J (dom f )
w∗ = ι

dom f ∗∗w∗ ≤ 0 f ∗∗ ∀ f ∈ �(X). (13)

For this use (7) and Proposition 3.
In the next result we consider the case of the maximum f ∨ g of two convex functions.

Proposition 7 Let f, g ∈ �(X) with dom f ∩ dom g �= ∅. Then

( f ∨ g)∗∗ = sup
{

(λ f + µg)∗∗ | (λ, µ) ∈ �2
} ≥ f ∗∗ ∨ g∗∗. (14)
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Moreover, if either (a) f is continuous at some point in dom f ∩ dom g and g is proper, or
(b) X is complete, f, g ∈ �(X) and 0 ∈ ic(dom f − dom g), then

( f ∨ g)∗∗ = f ∗∗ ∨ g∗∗. (15)

Proof By [9, Cor. 2.8.11] we have that

( f ∨ g)∗ = min
{

(λ f + µg)∗ | (λ, µ) ∈ �2
}

.

The equality in (14) follows now using (1). Since f ∨ g ≥ f we get ( f ∨ g)∗∗ ≥ f ∗∗, and
so the inequality in (14) holds true, too.

Assume now that one of the two mentioned conditions holds. Then, by [9, Cor. 2.8.13]
one has

( f ∨ g)∗ = min
(λ,µ)∈�2

[

(λ f )∗�(µg)∗
]

,

and so, using again (1) as well as relations (12), (2) and (13), we get

( f ∨ g)∗∗ = sup
(λ,µ)∈�2

[

(λ f )∗�(µg)∗
]∗ = sup

(λ,µ)∈�2

[

(λ f )∗∗ + (µg)∗∗]

= max

{

sup
λ∈(0,1)

[

λ f ∗∗ + (1 − λ)g∗∗] , ι∗∗
dom f + g∗∗, f ∗∗ + ι∗∗

dom g

}

= max
{

f ∗∗ ∨ g∗∗, ι
dom f ∗∗w∗ + g∗∗, f ∗∗ + ι

dom g∗∗w∗
}

;
it was possible to apply (2) because f ∗∗ and g∗∗ are proper functions under the present
conditions. If ( f ∗∗ ∨ g∗∗) (x∗∗) = ∞ then clearly ( f ∨ g)∗∗(x∗∗) = ( f ∗∗ ∨ g∗∗) (x∗∗). Let
x∗∗ ∈ X∗∗ be such that f ∗∗(x∗∗) ≤ g∗∗(x∗∗) < ∞. Then

(

f ∗∗ + ι
dom g∗∗w∗

)

(x∗∗) ≤
(

ι
dom f ∗∗w∗ + g∗∗) (x∗∗) = (

f ∗∗ ∨ g∗∗) (x∗∗),

and so the conclusion follows. ��
The condition g is proper in (a) is essential even in Hilbert spaces. To see this consider

X infinite dimensional, f := 0 and g(x) := ϕ(x) for x ∈ H := {u ∈ X | 〈u, x∗〉 ≥ 0} and
g(x) := ∞ for x /∈ H , where x∗ ∈ X∗ \{0} and ϕ ∈ X ′ \ X∗. Then f ∗∗ = 0 and g∗∗ = −∞,
and so f ∗∗ ∨ g∗∗ = f ∗∗ = 0. On the other hand ( f ∨ g)(x) = 0 ∨ ϕ(x) ≥ ιH (x) for x ∈ X .
Hence f ∨ g ≥ ιH . Since ϕ is not continuous, ϕ is not bounded below on any nonempty
open set. Therefore, for x ∈ X with 〈x, x∗〉 < 0 there exists a sequence (xn) converging
to x such that ϕ(xn) → −∞. It follows that f ∨ g(x) ≤ 0, and so f ∨ g = ιH . Hence

( f ∨ g)∗∗ = ι∗∗
H = ι

H
w∗ �= 0 because H

w∗ = {x∗∗ ∈ X∗∗ | 〈x∗, x∗∗〉 ≥ 0}.
Note that the main aim of [3] was to deduce the formula (15); it was obtained under con-

dition (b) of Proposition 7 (see [3, Th. 6]) with a quite involved proof. For another approach
see [1].

In [3] the authors gave also a formula for the preconjugate of f ∗ ∨ g∗ with f, g ∈ �(X)

and dom f ∗ ∩dom g∗ �= ∅, that is, for ( f ∗ ∨ g∗)�. This is the function defined in [3, p. 3554]
and denoted by f ∧

0
g, the expression of which is quite complicated. Below we give another

expression of the preconjugate of f ∗ ∨ g∗.

Proposition 8 Let X be a locally convex space.
(i) Let f ∈ �(X) and ϕ f : R × X → R, ϕ f (α, ·) := f α for α ∈ P and ϕ f (α, ·) := ∞

otherwise. Then ϕ f ∈ �(R × X) and ϕ f is positively homogeneous.
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(ii) Let f ∈ �(X) and ϕ f : R × X → R, ϕ f (α, ·) := f α for α ∈ R+ and ϕ f (α, ·) := ∞
otherwise. Then ϕ f ∈ �(R × X) and ϕ f is positively homogeneous. Moreover, ϕ f = ϕ f .

(iii) Let f ∈ �(X) and x ∈ X. If f (0) ≤ 0 then ϕ f (·, x) is nonincreasing and right-con-
tinuous; if f ≥ f∞ then ϕ f (·, x) is nondecreasing on R+.

(iv) If f, g ∈ �(X), then the function

f � g := inf {( f λ)�(gµ) | λ,µ > 0, λ + µ = 1}
is convex. Moreover, if f, g ∈ �(X) and dom f ∗ ∩ dom g∗ �= ∅ then

f � g ≤ f �̄ g := inf {( f λ)�(gµ) | (λ, µ) ∈ �2} ≤ f � g,

f �̄ g ∈ �(X), f � g ∈ �(X) and
(

f � g
)∗ = ( f �̄ g)∗ = ( f � g)∗ = f ∗ ∨ g∗.

Proof (i) It is easy to see that

epi ϕ f = {

(α, u, t) | α > 0, (α−1u, α−1t) ∈ epi f
} = P · ({1} × epi f ).

Since epi f is convex, epi ϕ f is also convex. Hence ϕ f is convex. The positive homogeneity
of ϕ f is immediate from its definition.

(ii) Having a nonempty closed convex set A ⊂ X we have that

cl (P({1} × A)) = cl (R+({1} × A)) = ({0} × A∞) ∪ (P({1} × A)) .

Hence, for A := epi f with f ∈ �(X), we have

epi ϕ f = ({0} × A∞) ∪ (P({1} × A)) = cl(epi ϕ f )

(iii) Let f ∈ �(X). Assume first that f (0) ≤ 0 and fix x ∈ X . Since the mapping
P � s �−→ s−1[ f (0 + sx) − f (0)] is nondecreasing and f (0) ≤ 0 we obtain that P �
s �−→ s−1 f (sx) is nondecreasing as the sum of two nondecreasing functions. It follows that
ϕ f (·, x) is nonincreasing. This implies that I := dom ϕ f (·, x) is an interval included in R+
with sup I = ∞ when I �= ∅. Because ϕ f is lsc we obtain that ϕ f (·, x) is right-continuous
(and even continuous on R \ {inf I }.

Assume now that f ≥ f∞. Then epi f ⊂ epi f∞ = (epi f )∞. Let x ∈ dom f and
1 < t . Then t (x, f (x)) = (x, f (x)) + (t − 1)(x, f (x)) ∈ epi f + (epi f )∞ ⊂ epi f , and so
f (t x) ≤ t f (x). Hence f (t x) ≤ t f (x) for all x ∈ X and t ∈ [1,∞). Taking now 0 < s < t
and x ∈ X we get

f∞(x) = s f∞(s−1x) ≤ s f (s−1x) = s f
(

ts−1t−1x
) ≤ sts−1 f (t−1x) = t f (t−1x),

which means that ( f 0)(x) ≤ ( f s)(x) ≤ ( f t)(x). Hence ϕ f (x, ·) is nondecreasing on R+.
(iv) Let f, g ∈ �(X). From (i) we obtain that the mapping F : X × X × R → R

defined by F(x, u, t) := ϕ f (u, t) + ϕg (x − u, 1 − t) is convex. Since ( f � g)(x) =
inf(u,t)∈X×R F(x, u, t), f � g is convex, too (as a marginal function associated to a con-
vex function). Moreover, using (1), (5) and (2) we get

( f � g)∗ = sup
{

[( f λ)�(gµ)]∗ | λ,µ > 0, λ + µ = 1
}

= sup
{

( f λ)∗ + (gµ)∗ | λ,µ > 0, λ + µ = 1
}

= sup
{

λ f ∗ + µg∗ | λ,µ > 0, λ + µ = 1
} = f ∗ ∨ g∗.

Assuming that f, g ∈ �(X) and taking ˜F(x, u, t) := ϕ f (u, t) + ϕg (x − u, 1 − t), we
obtain, as for f �g, that f �̄ g is convex, and, of course, f �̄ g ≤ f �g. A similar computation
as for ( f � g)∗ yields
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( f �̄ g)∗ = max
{

f ∗ ∨ g∗, ι
dom f ∗w∗ + g∗, f ∗ + ι

dom g∗w∗
}

,

whence, as in the proof of the preceding proposition, we get ( f �̄ g)∗ = f ∗ ∨ g∗. Assuming,
moreover, that dom f ∗ ∩ dom g∗ �= ∅, f ∗ ∨ g∗ ∈ �w∗(X∗), and so f � g = ( f � g)∗� =
( f ∗ ∨ g∗)� ∈ �(X). The conclusion follows. ��

The arguments above show that for f, g ∈ �(X) with dom f ∗ ∩ dom g∗ �= ∅ we have
f � g ∈ �(X) and ( f � g)∗ = f ∗ ∨ g∗. Note that the definition of f ∧

0
g in [3] is specific

to normed vector spaces; more precisely, f ∧
0

g = limδ↘0 f ∧
δ

g, and the expression of

f ∧
δ

g involves the norm. Assuming that X is a nvs, we obtain that f ∧
0

g = f � g whenever

f, g ∈ �(X) with dom f ∗ ∩ dom g∗ �= ∅. Moreover, as in [3, Th. 12], one obtains that for
f, g ∈ �(X) with dom f ∩ dom g �= ∅ one has

( f ∨ g)∗∗ = f ∗∗ ∨ g∗∗ ⇐⇒ ( f ∨ g)∗ = f ∗ � g∗.

Note that the function ϕ f was introduced in [7, Cor. 13.5.1]. Moreover, the first part of
assertion (iii) is obtained in [6, Prop. 2.1] in finite dimensional spaces.

6 The biconjugate of f � g

Let X, Y be locally convex spaces and f ∈ �(X), g ∈ �(Y ). Following [6, Def. 2.1], we
define a function f � g : X × Y → R for pairs ( f, g) of types I and II. More precisely we
say that

(i) the pair ( f, g) is of type I if f (0) ≤ 0 and g(y) ≤ 0 for every y ∈ dom g; in this case

( f � g)(x, y) :=
{

ϕ f (−g(y), x) if x ∈ X, y ∈ dom g,

+∞ otherwise,

where ϕ f is defined in Proposition 8 (ii);
(ii) the pair ( f, g) is of type II if f ≥ f∞ and g ≥ 0; in this case, when f �= f∞,

( f � g)(x, y) :=
{

ϕ f (g(y), x) if x ∈ X, y ∈ dom g,

+∞ otherwise,

while if f = f∞,

( f � g)(x, y) := f (x) + ιdom g(y).

First observe that for f ∈ �(X) we have the following (almost) obvious equivalences
(see also [6, Lem. 2.1]):

f (0) ≤ 0 ⇐⇒ f ∗ ≥ 0, (16)

f ≥ f∞ ⇐⇒ f ∗ ≤ ( f∞)∗ = ι
dom f ∗w∗ ⇐⇒ f ∗(x∗) ≤ 0 ∀x∗ ∈ dom f ∗, (17)

f = f∞ ⇐⇒ [ f ≥ f∞ and f (0) = 0] ⇐⇒ f ∗ = ιdom f ∗ , (18)

as well as the following relation

sup
x∈[ f <γ ]

[〈

x, x∗〉 − η f (x)
] = sup

x∈[ f ≤γ ]
[〈

x, x∗〉 − η f (x)
] ∀η ∈ R+, ∀γ > inf f, (19)

where [ f ≤ γ ] := {x ∈ X | f (x) ≤ γ } and [ f < γ ], [ f = γ ] being defined similarly;
for (19) fix some x ∈ [ f <γ ] and observe that for x ∈ [ f ≤ γ ] and λ ∈ (0, 1) one has
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(1−λ)x +λx ∈ [ f < γ ] and take into account that the restriction of f to the segment [x, x]
is continuous.

From (16)–(18) we obtain immediately that, ( f, g) is of type I (resp. of type II) if and
only if (g∗, f ∗) is of type II (resp. of type I).

In the next result we prove that f � g ∈ �(X ×Y ) whenever ( f, g) is of type I. In a similar
way one can obtain that f � g ∈ �(X × Y ) when ( f, g) is of type II, but this will follow also
from Proposition 9 below.

Lemma 1 Let ( f, g) be of type I. Then f � g ∈ �(X × Y ).

Proof Using the fact ϕ f is convex and ϕ f (·, x) is nonincreasing [see Proposition 8 (ii) and
(iii)] one obtains easily that f � g ∈ �(X × Y ). Consider a net ((xi , yi , ti ))i∈I ⊂ epi f � g
converging to (x, y, t) ∈ X × Y × R. It follows that 0 ≥ γi := g(yi ) for every i .
We may (and we do) assume that γi → γ ∈ [g(y), 0]. If γi = 0 for i ∈ J with
J ⊂ I cofinal, then ti ≥ ( f � g)(xi , yi ) = f∞(xi ), whence t ≥ f∞(x). Else we may
assume that γi > 0 for every i ∈ I . Then (−γ −1

i xi ,−γ −1
i ti ) ∈ epi f for i ∈ I . If

γ = 0, using the convexity of f and the fact that (0, 0) ∈ epi f we obtain rapidly
that (x, t) ∈ (epi f )∞ = epi f∞, and so t ≥ f∞(x). Since ϕ f (·, x) is nonincreasing
we get ( f � g)(x, y) = ϕ f (−g(y), x) ≤ ϕ f (0, x) = f∞(x) ≤ t . If γ �= 0, since

(−γ −1
i xi ,−γ −1

i ti ) ∈ epi f , we obtain that (−γ −1x,−γ −1t) ∈ epi f . Using again the
monotonicity of ϕ f (·, x), we get ( f � g)(x, y) = ϕ f (−g(y), x) ≤ ϕ f (−γ, x) ≤ t . Hence
(x, y, t) ∈ epi f � g. ��

The next result is stated in [6, Th. 2.1] for X and Y finite dimensional spaces. We provide
its proof for reader’s convenience.

Proposition 9 Let f ∈ �(X) and g ∈ �(Y ) be such that ( f, g) is of type I or II. Then
(g∗, f ∗) is of type II or I, respectively, and ( f � g)∗(x∗, y∗) = (g∗

� f ∗)(y∗, x∗). Conse-
quently, f � g ∈ �(X × Y ).

Proof Fix (x∗, y∗) ∈ X∗ × Y ∗ and set µ := ( f � g)∗(x∗, y∗), η := (g∗
� f ∗)(y∗, x∗).

(i) Assume that ( f, g) is of type I. Using Lemma 1 we have that f � g ∈ �(X ×Y ). More-
over, as observed above, (g∗, f ∗) is of type II, that is, g∗ ≥ (g∗)∞ and f ∗ ≥ 0. Assume first
that [g < 0] = ∅. Then, by (17) and (18) applied for f replaced by g∗, we get g∗ = (g∗)∞
and µ = α, where

α := sup
{〈

x, x∗〉 + 〈

y, y∗〉 − f∞(x) | x ∈ X, y ∈ [g = 0]} (20)

=ι
dom f ∗w∗ (x∗) + ι∗dom g(y∗) = ι

dom f ∗w∗ (x∗) + (g∗)∞(y∗) = η.

Assume now that [g < 0] �= ∅. Then µ = α ∨ β with α defined by (20) and

β := sup
{〈

x, x∗〉 + 〈

y, y∗〉 + g(y) f
(

(−g(y))−1x
) | x ∈ X, y ∈ [g < 0]}

= sup
{−g(y)

〈

x, x∗〉 + 〈

y, y∗〉 + g(y) f (x) | x ∈ X, y ∈ [g < 0]}

= sup
{〈

y, y∗〉 − g(y) f ∗(x∗) | y ∈ [g < 0]} .

Hence β = ∞ if f ∗(x∗) = ∞. Since dom g = [g ≤ 0], by (19), β = ι∗dom g(y∗) =
(g∗)∞(y∗) when f ∗(x∗) = 0 and β = f ∗(x∗)g∗( ( f ∗(x∗))−1 y∗) when f ∗(x∗) ∈ P. Hence
β = η. On the other hand, from (20) we have that

α = ι
dom f ∗w∗ (x∗) + ι∗[g=0](y∗) ≤ ι

dom f ∗w∗ (x∗) + ι∗dom g(y∗) = ιdom f ∗(x∗) + (g∗)∞(y∗).
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Hence α ≤ β if f ∗(x∗) = ∞, α = β if f ∗(x∗) = 0 and, because (g∗)∞ ≤ g∗, α =
(g∗)∞(y∗) = f ∗(x∗)(g∗)∞

(

( f ∗(x∗))−1 y∗) ≤ β if f ∗(x∗) ∈ P. Therefore, µ = η.
(ii) Assume now that ( f, g) is of type II. Then, as seen above, (g∗, f ∗) is of type I. By

(i) we obtain that g∗
� f ∗ ∈ �w∗(Y ∗ × X∗) and (g∗

� f ∗)�(y, x) = ( f ∗�
� g∗�)(x, y) =

( f � g)(x, y) for all (x, y) ∈ X × Y . It follows that f � g ∈ �(X × Y ) and

( f � g)∗(x∗, y∗) = (g∗
� f ∗)�∗(y∗, x∗) = (g∗

� f ∗)(y∗, x∗).

The proof is complete. ��
Proposition 10 Let X and Y be normed vector spaces and let f ∈ �(X), g ∈ �(Y ) with
( f, g) of type I or II. Then ( f � g)∗∗ = f ∗∗

� g∗∗.

Proof Applying twice Proposition 9 we obtain the conclusion. ��
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